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Finite Automata
• Finite automata is a general model for representing that 

whether the given string is acceptable or not by the 
language.

• An abstract model/representation of computer that does 
not deal with the implementation details

• A Finite Automata is a collection of three things:
– A finite set of states.

• One of which is designed as the initial state called the start state.
• Some ( may be none ) states are designed as final states.

– An alphabet ∑ of possible input letters.
– A finite set of transitions that tell for each state and for each letter 

of the input alphabet; which state to go next.

• It is called Finite Automata because:
– “Finite” because the number of possible states and the number of 

letters in the alphabet are both finite.
– “Automation” because the changes of states is totally governed by 

the input.
• The determination of what state is next is automatic no willful.
• “Automation” comes from Greek, so its correct plural is “Automata”.
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Finite Automata

• Some people also refer is as Finite Accepter.
– Because it sole job is to accept certain input strings and 

reject others.

– It does not do anything like print output or play music etc.

• It works like as:
– It is being presented with an input string of letters.

– It reads letter by letter starting at the leftmost letter, 
beginning at the start state.

– The preceding letters determines the sequence of states.

– The sequence ends when the last input letter has been 
read.

– If it is at the final state then the string is accepted 
otherwise rejected.

4

Language of Finite Automata

• The set of all strings that do leave us in a final state is the 
language associated with the FA.

• We can also say this as:
– This FA accepts the language L OR L is the language accepted by 

this FA OR L is language of the FA.

• If language L1 is contained in language L2 and a certain 
FA accepts L2 ( all the words in L2 are accepted), then this 
FA also must accept all the words in language L1 (because 
they are also word in L2).
– But we would not say that L1 is accepted by this FA because this 

would mean that all the words the FA accepts are in L1 which will 
lead to confusion.

– Rather we would say that L2 is accepted by this FA.

• That’s why FA is also called language recognizer.
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Mathematical Representation

• To give mathematical representation to FA definition.
– A finite set of states Q = { q0, q1, q2, -----, qn }.
– A state q0 of Q is the start state. 

q0  Q
– A subset of Q is called the final states.

F  Q
– An finite set of alphabet ∑ = { x1, x2, x3, ----- xn }.
– A transition function  ( lowercase Greek delta )associating 

each pair of states and letter with a state:
 ( qi, xj ) = qk

• Therefore FA can be represented as:
FA = (Q, S, F, ∑ ,)

6

FA Notations

• For pictorial representation:
– Each state is represented by a small circle 

labeled with name of the state.
– Transition is represented by an arrow, from 

one state to another state.
– Arrow is labeled by the letter, on which 

transition is being made.
– Start state is represented by a incoming arrow 

labeled with start or state labeled with minus 
symbol “-”.

– Final state is represented by a double circle line 
or state labeled with plus symbol “+”.
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Notations.

• State

• Transition:

• Start State:

• Final State

qn

qn qm
xi

qn

qn

-

+

Start

8

Example.

b

0 1b 2b

a

Start

1. The words that can be accepted by this FA machine 
are:

L = { bb, bba, bbaa,bbaba, bbbb, bbaabba, ---- }

2. Therefore the RE for this FA machine will be:

bb ( a | b )*
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Transition table

• Transition table is another way to represent a FA 
machine.

• In the each row is the name of one of the states in 
the FA.

• In the table each column is a letter of the input 
alphabet.

• The entries inside the table are the new states that 
the FA moves into as the transition states.
– Entries having no states are labeled with error.

• The start state is represented by labeling “Start”.

• The final state is represented by labeling “Final”.

10

Example

• For the language  bb(a |b)*, Transition table will be.

ba

1ErrorStart 0

2Error1

22Final 2

States
Symbol
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FAs and Their Languages

• We can construct FA machine for a desired language 
by having it in our mind and the FA machine will act 
as a language-recognizer or language definer.
– This is not an easy task, because we would not be able to 

determine all the words that can be part of the language.

• Regular expression makes the task easier because:
– RE determines all of the words that are in the language.

• Therefore to construct a FA machine for a language 
we would first have to determine the RE for that 
language.

• Thus we can say that the language of FA is 
determined by the corresponding RE.

12

Construction of FA

• A FA machine can be easily constructed from the regular 
expression of the corresponding language.

• A RE normally consists of:
– Sequence:  A single letter.

– Alternation : Two or more than two letters but selection is based on 
one of them.

– Keleen Closure: Zero or more repetition of a letter or more than one 
letters.

– Positive Closure: Zero or more repetition of a letter or more than 
one letters.

• The procedure is:
– Divide the RE into its sub parts.

– Construct FA for each of the sub parts.

– Combine these sub parts FAs together into one big FA machine.
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Example
• Sequence  ( a single letter ):

• Alternation ( |  ):

• Keleen Closure ( |  )* :

• Positive Closure ( |  )+ 

qi qj


qi





qjqi




 

qi qj





14

Example

• Construct FA for the RE ( a | b )* bb.
– This RE can be divided into three parts.

• First is the keleen Closure  ( a | b )*.

• Second is the sequence ( single b ).

• Third is the sequence ( single b).

– Construct FA for each of the sub part and then 
combine them in the order as they are occurring in the 
RE.

– The resulting FA machine will be:

0 1b 2b

a

Start

b
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Example

• Build a FA that accepts all words containing a triple 
letter either aaa or bbb (only those words).
– RE will be   ( aaa | bbb ).

– This RE can be divided into two sub parts that aaa and bbb.

– First part (aaa) can be further divided into three sub parts 
(sequences) and similarly the second part.

– For aaa it will be as:

– For bbb it will be as:

0 21 3
Start a a a

0 21 3
Start b b b

16

Contd.

• Now by combining these parts we get.

0

21

5
Start

a
a

a

0

43

5

b
b

b

0Start 55

aaa

bbb
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Example

• Build FA for a language that strats with either 
triple (aaa) or triple ( bbb ) followed by any 
combination a’s and b’s.
– RE will be  ( aaa | bbb ) ( a | b )*.

– This is similar to the previous example but we have 
one more keleen closure.

• ( a | b )*

– Combining this with the previous example we will get 
the require FA machine.

qi





18

Contd.

0

21

5
Start

a
a

a

0

43

5

b
b

b

a

b

0Start 55

a

b

aaa

bbb
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Language from FA Machine

• In the similar way we can also extract language 
from a FA machine.

• This proces is reverse of the building FA machine 
from RE.

• It works as:
– Write RE for each of the sub part of the FA machine.

– Combine REs in the order occurring in the FA 
machine.

– Describe language on the basis of resultant RE.

20

Example

• Consider the FA machine.

– State 0 contains a keleen closure ( a | b )*.
– State 0 contains a transition to state 1 on input a; which is 

sequence  (a ).
– State 1 contains a transition to state 2 on input a; which is 

sequence  (a ).
– State 2 contains a keleen closure ( a | b )*.
– By combining them we get:

( a | b )* a a ( a | b )*
– Therefore the language is all words that contain a double letter 

(aa) somewhere.

a

b

0 2a1a

b

a
Start
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Example

• Build FA machine for the RE:

( a | b )* ( aa | bb ) ( a | b )*

• Build FA machine that accepts only the words 
baa, ab, abb  only and no other strings.

• Build FA machine that accepts only those words 
that do not end with ba.

• Build FA machine that accepts only those words 
that begin or end with double letter ( aa or bb ).

• Write out the transition table for the FA machine 
on slide number 20.

22

Types of FA

• There are TWO types of FA.
– Non-Deterministic Finite Automata (NFA).

– Deterministic Finite Automata (DFA).
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Non-Deterministic Finite Automata (NFA)

• Consider the FA.

• Similarly its equivalent is:

3

4

5

a

a

• In this FA two edges 
coming out of the same 
state to have exactly the 
same label.

•The two edges are leading 
to the different states.

3

4

2

a

ε 5a

• This FA contains ε -
transition from state 3 
to 2.

• ε - transition is 
nothing but just a jump 
form one state to 
another state.

24

Non-Deterministic Finite Automata (NFA)

• When a state can make transition to more than 
one states on the same input symbol, we say that 
this machine is nondeterministic.

• Because it cannot determine to which it should 
make the transition next.

• But, a NFA (nondeterministic finite automata) is 
able to be in several states at once.
– Another way to think of the NFA is that it travels all 

possible paths, and so it remains in many states at 
once.  As long as at least one of the paths results in an 
accepting state, the NFA accepts the input.    
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NFA Example

• This NFA accepts only 
those strings that end in 01

• Running in “parallel 
threads” for string 
1100101

q0Start q1 q2
0 1

0,1

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

26

Formal Definition of FA
• Similar to FA a  Nondeterministic Finite Automata (NFA) 

is a collection of the following things:
– A finite set of states, typically Q.
– One state is the start/initial state, typically q0 such that:

q0  Q
– A subset of Q is called the final states.

F  Q
– An finite set of alphabet ∑ = { x1, x2, x3, ----- xn }.
– A finite set of transitions that describes how to proceed from each 

state to other states along edges labeled with letters of the 
alphabet.

• There is the possibility of more than one edges with the same label 
from any state.

• Some of the edges can be labeled with the ε – transition (empty).

• Therefore NFA can be represented as:
NFA = (Q, S, F, ∑ ,)
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Example

1

5

4

3

2
a

a
a

a

1 876 5

2 3 4

a
ε

a
a

a
ε ε

Is equivalent to.

28

NFA for Sequence

• Sequence is a single alphabet “a” etc.

1 2astart

1 2εstart 3 4a ε
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NFA for Alternation

• Alternation is ( a | b ).

1 2

a

b

1

2

3

4

5

6

a

b
ε ε

ε ε

start

start

30

NFA for Kleene Closure

• Keleen Closure is ( a | b )*.

1 2
a

b

1

2

3

4

5

6

a

b
ε ε

ε ε

ε

ε

start

start

ε

ε
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NFA for Positive Closure

• Positive Closure is ( a | b )+.

1 2
a

b

1

2

3

4

5

6

a

b
ε ε

ε ε

ε

start

start

ε

32

NFA Example

• Practice with the following NFA to satisfy 
yourself that it accepts ε, a, baba, baa, and aa, but 
that it doesn’t accept b, bb, and babba.

q1

q2 q3

b a
ε

a
a,b
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Theorem

• The Theorem:

FA = NFA

• By which we mean that any language definable 
by a nondeterministic finite automation is also 
definable by a finite automation and vice versa.

• If we take meaning that every NFA is itself an 
FA. This is not true and is a mistake.

• Only that for every FA there is a some NFA that 
is equivalent to it as a language accepter.

34

Proof

• Consider the following FA.

• Here state Zero (0) has more than one transition 
on the same input symbol “a”.

a

b

0 2a1aStart

1

2

3

4

5

6 7 8
Start

a

b

ε

ε

a a

ε

ε
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Deterministic Finite Automata
• Similar to FA and NFA, DFA is a collection of the 

following things:
– A finite set of states, typically Q.
– One state is the start/initial state, typically q0 such that:
– q0  Q
– A subset of Q is called the final states.
– F  Q
– An finite set of alphabet ∑ = { x1, x2, x3, ----- xn }.
– A finite set of transitions that describes how to proceed from each 

state to other states along edges labeled with letters of the 
alphabet.

• No state has ε – transition (empty).
• For each state Qi and input symbol Xj, there is at most one edge 

labled Xj leaving Qi.

• Therefore NFA can be represented as:
DFA = (Q, S, F, ∑ ,)

36

Example
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Example

38

Example

• Here is a DFA for the 
language that is the set of 
all strings of 0’s and 1’s 
whose numbers of 0’s and 
1’s are both even:

q3

q0 q1

q2

Start

1

1

1

1

0 0 0 0
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Comparison of NFA and DFA

• NFA has empty 
transitions.

• NFA can have more than 
one transitions out of a 
state on the same input 
symbol.

• NFA is difficult to be 
programmed.

• DFA does not have empty 
transitions.

• DFA have only one 
transition out of a state on 
an input symbol.

• DFA is easy to be 
programmed.

40

Equivalence of DFA’s and NFA’s

• For most languages, NFA’s are easier to construct 
than DFA’s.

• But it turns out we can build a corresponding 
DFA for any NFA.
– But there may be up to 2n states in turning a NFA into 

a DFA. 
– However, for most problems the number of states is 

approximately equivalent or less.

• The sequence for building DFA for a language is:
– Construct RE for the language.
– Construct NFA for the RE.
– Construct DFA form the NFA.
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Theorem

• The theorem is:
– A language L is accepted by some DFA if and only if 

L is accepted by some NFA.

L(DFA) = L(NFA)

• Proof:
– This assumption is true if we can construct DFA from 

the NFA.

– We can construct DFA from NFA.

– But it is very difficult to construct NFA from DFA.

42

Proof

• Consider the NFA machine.

• Its equivalent DFA is.
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Conversion of NFA to DFA

• It is very difficult and error prone to write directly 
DFA for a language.

• Therefore we have to first write NFA for the 
language and then convert it into corresponding 
DFA.

• There are two methods to convert NFA to DFA.
 e-Closure Method.

– Sub-Set Method.

44
NFA for (a | b )*abb

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

e-Closure Method.
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• e-closure({0}) = {0,1,2,4,7} = A

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

State
Input symbol

a b

A

A = {0,1,2,4,7}

46

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

State
Input symbol

a b

A B C

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C =  {1,2,4,5,6,7} 

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) =  e-closure ({5})  = {1,2,4,5,6,7}  = C
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State
Input symbol

a b

A B C

B B D

C

D

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}  

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) =  e-closure ({5})  = {1,2,4,5,6,7}  = C

 e-closure(move(B,a)) = e-closure({3,8}) = B 

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9}  = D

48

State
Input symbol

a b

A B C

B B D

C B C

D

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}  

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) =  e-closure ({5})  = {1,2,4,5,6,7}  = C

 e-closure(move(B,a)) = e-closure({3,8}) = B 

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9}  = D

 e-closure(move(C,a)) = e-closure({3,8}) = B 

 e-closure(move(C,b)) = e-closure({5})    = C
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State
Input symbol

a b

A B C

B B D

C B C

D B E

E

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}  

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) =  e-closure ({5})  = {1,2,4,5,6,7}  = C

 e-closure(move(B,a)) = e-closure({3,8}) = B 

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9}  = D

 e-closure(move(C,a)) = e-closure({3,8}) = B 

 e-closure(move(C,b)) = e-closure({5})    = C

 e-closure(move(D,a)) = e-closure({3,8}) = B 

 e-closure(move(D,b)) = e-closure({5,10}) = {1,2,4,5,6,7,10} =  E

50

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}  

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) =  e-closure ({5})  = {1,2,4,5,6,7}  = C

 e-closure(move(B,a)) = e-closure({3,8}) = B 

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9}  = D

 e-closure(move(C,a)) = e-closure({3,8}) = B 

 e-closure(move(C,b)) = e-closure({5})    = C

 e-closure(move(D,a)) = e-closure({3,8}) = B 

 e-closure(move(D,b)) = e-closure({5,10}) = {1,2,4,5,6,7,10} =  E

 e-closure(move(E,a)) = e-closure({3,8}) = B 

 e-closure(move(E,b)) = e-closure({5}) = C
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Eventually, the 5 sets are:

A={0,1,2,4,7}
B={1,2,3,4,6,7,8}
C={1,2,4,5,6,7}
D={1,2,4,5,6,7,9}
E={1,2,4,5,6,7,10}

A is start state

E is accepting state

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

Final Transition Table

52

B

C

A

a

b
D E

a

b

a

b

b

a

a

b

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C
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• The generated DFA may have a large number of states.

• Hopcroft’s algorithm: minimizes DFA states

• Idea: find groups of equivalent states.

• All transitions from states in one group G1 go to states in 
the same group G2

• Construct the minimized DFA such that there is one state 
for each group of states from the initial DFA.

54

B

C

A

a

b
D E

a

b

a

b

b

a

b

b

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C
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State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

B

A, C

a

b

D E
a b

b

a

b

a

56

Convert the regular expression 
a (a | c)* b

To DFA using by Thompson Construction Method

RE -> NFA -> DFA
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ε-closure(0) = {0} = S0
ε-closure(move(S0, a)) = ε-closure({1}) = {1,2,3,5,8} = S1
ε-closure(move(S0, b)) = ε-closure({}) = no state

ε-closure(move(S0, c)) = ε-closure({}) = no state
ε-closure(move(S1, a)) = ε-closure({4})  = {4,7,8,2,3,5} = S2
ε-closure(move(S1, b)) = ε-closure({9})  = {9} = S3

ε-closure(move(S1, c)) = ε-closure({6})  = {6,7,8,2,3,5} = S4
ε-closure(move(S2, a)) = ε-closure({4}) = S2
ε-closure(move(S2, b)) = ε-closure({9}) = S3
ε-closure(move(S2, c)) = ε-closure({6}) = S4
ε-closure(move(S3, a)) = ε-closure({}) = no state
ε-closure(move(S3, b)) = ε-closure({}) = no state
ε-closure(move(S3, c)) = ε-closure({}) = no state

ε-closure(move(S4, a)) = ε-closure({4}) =  S2
ε-closure(move(S4, b)) = ε-closure({9}) =  S3
ε-closure(move(S4, c)) = ε-closure({6}) =  S4
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State a b c

S0 S1 - - Initial

S1 S2 S3 S4

S2 S2 S3 S4

S3 - - - Final

S4 S2 S3 S4

60

State a b c
S0 S1 - - Initial
S1 S1 S3 S1

S2 S2 S3 S4

S4 S2 S3 S4

S3 - - - Final

a (a | c)* b 

State a b c

S0 S1 - - Initial

S1 S2 S3 S4

S2 S2 S3 S4

S3 - - - Final

S4 S2 S3 S4
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• E nd of Chapter # 3


