
3/22/2020

1

1

Chapter # Chapter # 33
Finite Automata.Finite Automata.
Chapter # Chapter # 33
Finite Automata.Finite Automata.

Dr. Dr. ShaukatShaukat AliAli

Department of Compute r ScienceDepartment of Compute r Science

University of PeshawarUniversity of Peshawar

2

Finite Automata
• Finite automata is a general model for representing that

whether the given string is acceptable or not by the
language.

• An abstract model/representation of computer that does
not deal with the implementation details

• A Finite Automata is a collection of three things:
– A finite set of states.

• One of which is designed as the initial state called the start state.
• Some (may be none) states are designed as final states.

– An alphabet ∑ of possible input letters.
– A finite set of transitions that tell for each state and for each letter

of the input alphabet; which state to go next.

• It is called Finite Automata because:
– “Finite” because the number of possible states and the number of

letters in the alphabet are both finite.
– “Automation” because the changes of states is totally governed by

the input.
• The determination of what state is next is automatic no willful.
• “Automation” comes from Greek, so its correct plural is “Automata”.

3/22/2020

2

3

Finite Automata

• Some people also refer is as Finite Accepter.
– Because it sole job is to accept certain input strings and

reject others.

– It does not do anything like print output or play music etc.

• It works like as:
– It is being presented with an input string of letters.

– It reads letter by letter starting at the leftmost letter,
beginning at the start state.

– The preceding letters determines the sequence of states.

– The sequence ends when the last input letter has been
read.

– If it is at the final state then the string is accepted
otherwise rejected.

4

Language of Finite Automata

• The set of all strings that do leave us in a final state is the
language associated with the FA.

• We can also say this as:
– This FA accepts the language L OR L is the language accepted by

this FA OR L is language of the FA.

• If language L1 is contained in language L2 and a certain
FA accepts L2 (all the words in L2 are accepted), then this
FA also must accept all the words in language L1 (because
they are also word in L2).
– But we would not say that L1 is accepted by this FA because this

would mean that all the words the FA accepts are in L1 which will
lead to confusion.

– Rather we would say that L2 is accepted by this FA.

• That’s why FA is also called language recognizer.

3/22/2020

3

5

Mathematical Representation

• To give mathematical representation to FA definition.
– A finite set of states Q = { q0, q1, q2, -----, qn }.
– A state q0 of Q is the start state.

q0  Q
– A subset of Q is called the final states.

F  Q
– An finite set of alphabet ∑ = { x1, x2, x3, ----- xn }.
– A transition function  (lowercase Greek delta)associating

each pair of states and letter with a state:
 (qi, xj) = qk

• Therefore FA can be represented as:
FA = (Q, S, F, ∑ ,)

6

FA Notations

• For pictorial representation:
– Each state is represented by a small circle

labeled with name of the state.
– Transition is represented by an arrow, from

one state to another state.
– Arrow is labeled by the letter, on which

transition is being made.
– Start state is represented by a incoming arrow

labeled with start or state labeled with minus
symbol “-”.

– Final state is represented by a double circle line
or state labeled with plus symbol “+”.

3/22/2020

4

7

Notations.

• State

• Transition:

• Start State:

• Final State

qn

qn qm
xi

qn

qn

-

+

Start

8

Example.

b

0 1b 2b

a

Start

1. The words that can be accepted by this FA machine
are:

L = { bb, bba, bbaa,bbaba, bbbb, bbaabba, ---- }

2. Therefore the RE for this FA machine will be:

bb (a | b)*

3/22/2020

5

9

Transition table

• Transition table is another way to represent a FA
machine.

• In the each row is the name of one of the states in
the FA.

• In the table each column is a letter of the input
alphabet.

• The entries inside the table are the new states that
the FA moves into as the transition states.
– Entries having no states are labeled with error.

• The start state is represented by labeling “Start”.

• The final state is represented by labeling “Final”.

10

Example

• For the language bb(a |b)*, Transition table will be.

ba

1ErrorStart 0

2Error1

22Final 2

States
Symbol

3/22/2020

6

11

FAs and Their Languages

• We can construct FA machine for a desired language
by having it in our mind and the FA machine will act
as a language-recognizer or language definer.
– This is not an easy task, because we would not be able to

determine all the words that can be part of the language.

• Regular expression makes the task easier because:
– RE determines all of the words that are in the language.

• Therefore to construct a FA machine for a language
we would first have to determine the RE for that
language.

• Thus we can say that the language of FA is
determined by the corresponding RE.

12

Construction of FA

• A FA machine can be easily constructed from the regular
expression of the corresponding language.

• A RE normally consists of:
– Sequence: A single letter.

– Alternation : Two or more than two letters but selection is based on
one of them.

– Keleen Closure: Zero or more repetition of a letter or more than one
letters.

– Positive Closure: Zero or more repetition of a letter or more than
one letters.

• The procedure is:
– Divide the RE into its sub parts.

– Construct FA for each of the sub parts.

– Combine these sub parts FAs together into one big FA machine.

3/22/2020

7

13

Example
• Sequence (a single letter):

• Alternation ( | ):

• Keleen Closure ( | )* :

• Positive Closure ( | )+

qi qj


qi





qjqi




 

qi qj





14

Example

• Construct FA for the RE (a | b)* bb.
– This RE can be divided into three parts.

• First is the keleen Closure (a | b)*.

• Second is the sequence (single b).

• Third is the sequence (single b).

– Construct FA for each of the sub part and then
combine them in the order as they are occurring in the
RE.

– The resulting FA machine will be:

0 1b 2b

a

Start

b

3/22/2020

8

15

Example

• Build a FA that accepts all words containing a triple
letter either aaa or bbb (only those words).
– RE will be (aaa | bbb).

– This RE can be divided into two sub parts that aaa and bbb.

– First part (aaa) can be further divided into three sub parts
(sequences) and similarly the second part.

– For aaa it will be as:

– For bbb it will be as:

0 21 3
Start a a a

0 21 3
Start b b b

16

Contd.

• Now by combining these parts we get.

0

21

5
Start

a
a

a

0

43

5

b
b

b

0Start 55

aaa

bbb

3/22/2020

9

17

Example

• Build FA for a language that strats with either
triple (aaa) or triple (bbb) followed by any
combination a’s and b’s.
– RE will be (aaa | bbb) (a | b)*.

– This is similar to the previous example but we have
one more keleen closure.

• (a | b)*

– Combining this with the previous example we will get
the require FA machine.

qi





18

Contd.

0

21

5
Start

a
a

a

0

43

5

b
b

b

a

b

0Start 55

a

b

aaa

bbb

3/22/2020

10

19

Language from FA Machine

• In the similar way we can also extract language
from a FA machine.

• This proces is reverse of the building FA machine
from RE.

• It works as:
– Write RE for each of the sub part of the FA machine.

– Combine REs in the order occurring in the FA
machine.

– Describe language on the basis of resultant RE.

20

Example

• Consider the FA machine.

– State 0 contains a keleen closure (a | b)*.
– State 0 contains a transition to state 1 on input a; which is

sequence (a).
– State 1 contains a transition to state 2 on input a; which is

sequence (a).
– State 2 contains a keleen closure (a | b)*.
– By combining them we get:

(a | b)* a a (a | b)*
– Therefore the language is all words that contain a double letter

(aa) somewhere.

a

b

0 2a1a

b

a
Start

3/22/2020

11

21

Example

• Build FA machine for the RE:

(a | b)* (aa | bb) (a | b)*

• Build FA machine that accepts only the words
baa, ab, abb only and no other strings.

• Build FA machine that accepts only those words
that do not end with ba.

• Build FA machine that accepts only those words
that begin or end with double letter (aa or bb).

• Write out the transition table for the FA machine
on slide number 20.

22

Types of FA

• There are TWO types of FA.
– Non-Deterministic Finite Automata (NFA).

– Deterministic Finite Automata (DFA).

3/22/2020

12

23

Non-Deterministic Finite Automata (NFA)

• Consider the FA.

• Similarly its equivalent is:

3

4

5

a

a

• In this FA two edges
coming out of the same
state to have exactly the
same label.

•The two edges are leading
to the different states.

3

4

2

a

ε 5a

• This FA contains ε -
transition from state 3
to 2.

• ε - transition is
nothing but just a jump
form one state to
another state.

24

Non-Deterministic Finite Automata (NFA)

• When a state can make transition to more than
one states on the same input symbol, we say that
this machine is nondeterministic.

• Because it cannot determine to which it should
make the transition next.

• But, a NFA (nondeterministic finite automata) is
able to be in several states at once.
– Another way to think of the NFA is that it travels all

possible paths, and so it remains in many states at
once. As long as at least one of the paths results in an
accepting state, the NFA accepts the input.

3/22/2020

13

25

NFA Example

• This NFA accepts only
those strings that end in 01

• Running in “parallel
threads” for string
1100101

q0Start q1 q2
0 1

0,1

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

q0

q0

q0

q0

q0

1

1

0

0

q1 - stuck

q0

q0

1

1

0

q0

q1

q2 - stuck

q1

q2 - accept

26

Formal Definition of FA
• Similar to FA a Nondeterministic Finite Automata (NFA)

is a collection of the following things:
– A finite set of states, typically Q.
– One state is the start/initial state, typically q0 such that:

q0  Q
– A subset of Q is called the final states.

F  Q
– An finite set of alphabet ∑ = { x1, x2, x3, ----- xn }.
– A finite set of transitions that describes how to proceed from each

state to other states along edges labeled with letters of the
alphabet.

• There is the possibility of more than one edges with the same label
from any state.

• Some of the edges can be labeled with the ε – transition (empty).

• Therefore NFA can be represented as:
NFA = (Q, S, F, ∑ ,)

3/22/2020

14

27

Example

1

5

4

3

2
a

a
a

a

1 876 5

2 3 4

a
ε

a
a

a
ε ε

Is equivalent to.

28

NFA for Sequence

• Sequence is a single alphabet “a” etc.

1 2astart

1 2εstart 3 4a ε

3/22/2020

15

29

NFA for Alternation

• Alternation is (a | b).

1 2

a

b

1

2

3

4

5

6

a

b
ε ε

ε ε

start

start

30

NFA for Kleene Closure

• Keleen Closure is (a | b)*.

1 2
a

b

1

2

3

4

5

6

a

b
ε ε

ε ε

ε

ε

start

start

ε

ε

3/22/2020

16

31

NFA for Positive Closure

• Positive Closure is (a | b)+.

1 2
a

b

1

2

3

4

5

6

a

b
ε ε

ε ε

ε

start

start

ε

32

NFA Example

• Practice with the following NFA to satisfy
yourself that it accepts ε, a, baba, baa, and aa, but
that it doesn’t accept b, bb, and babba.

q1

q2 q3

b a
ε

a
a,b

3/22/2020

17

33

Theorem

• The Theorem:

FA = NFA

• By which we mean that any language definable
by a nondeterministic finite automation is also
definable by a finite automation and vice versa.

• If we take meaning that every NFA is itself an
FA. This is not true and is a mistake.

• Only that for every FA there is a some NFA that
is equivalent to it as a language accepter.

34

Proof

• Consider the following FA.

• Here state Zero (0) has more than one transition
on the same input symbol “a”.

a

b

0 2a1aStart

1

2

3

4

5

6 7 8
Start

a

b

ε

ε

a a

ε

ε

3/22/2020

18

35

Deterministic Finite Automata
• Similar to FA and NFA, DFA is a collection of the

following things:
– A finite set of states, typically Q.
– One state is the start/initial state, typically q0 such that:
– q0  Q
– A subset of Q is called the final states.
– F  Q
– An finite set of alphabet ∑ = { x1, x2, x3, ----- xn }.
– A finite set of transitions that describes how to proceed from each

state to other states along edges labeled with letters of the
alphabet.

• No state has ε – transition (empty).
• For each state Qi and input symbol Xj, there is at most one edge

labled Xj leaving Qi.

• Therefore NFA can be represented as:
DFA = (Q, S, F, ∑ ,)

36

Example

3/22/2020

19

37

Example

38

Example

• Here is a DFA for the
language that is the set of
all strings of 0’s and 1’s
whose numbers of 0’s and
1’s are both even:

q3

q0 q1

q2

Start

1

1

1

1

0 0 0 0

3/22/2020

20

39

Comparison of NFA and DFA

• NFA has empty
transitions.

• NFA can have more than
one transitions out of a
state on the same input
symbol.

• NFA is difficult to be
programmed.

• DFA does not have empty
transitions.

• DFA have only one
transition out of a state on
an input symbol.

• DFA is easy to be
programmed.

40

Equivalence of DFA’s and NFA’s

• For most languages, NFA’s are easier to construct
than DFA’s.

• But it turns out we can build a corresponding
DFA for any NFA.
– But there may be up to 2n states in turning a NFA into

a DFA.
– However, for most problems the number of states is

approximately equivalent or less.

• The sequence for building DFA for a language is:
– Construct RE for the language.
– Construct NFA for the RE.
– Construct DFA form the NFA.

3/22/2020

21

41

Theorem

• The theorem is:
– A language L is accepted by some DFA if and only if

L is accepted by some NFA.

L(DFA) = L(NFA)

• Proof:
– This assumption is true if we can construct DFA from

the NFA.

– We can construct DFA from NFA.

– But it is very difficult to construct NFA from DFA.

42

Proof

• Consider the NFA machine.

• Its equivalent DFA is.

3/22/2020

22

43

Conversion of NFA to DFA

• It is very difficult and error prone to write directly
DFA for a language.

• Therefore we have to first write NFA for the
language and then convert it into corresponding
DFA.

• There are two methods to convert NFA to DFA.
 e-Closure Method.

– Sub-Set Method.

44
NFA for (a | b)*abb

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

e-Closure Method.

3/22/2020

23

45

• e-closure({0}) = {0,1,2,4,7} = A

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

State
Input symbol

a b

A

A = {0,1,2,4,7}

46

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

State
Input symbol

a b

A B C

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) = e-closure ({5}) = {1,2,4,5,6,7} = C

3/22/2020

24

47

State
Input symbol

a b

A B C

B B D

C

D

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) = e-closure ({5}) = {1,2,4,5,6,7} = C

 e-closure(move(B,a)) = e-closure({3,8}) = B

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9} = D

48

State
Input symbol

a b

A B C

B B D

C B C

D

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) = e-closure ({5}) = {1,2,4,5,6,7} = C

 e-closure(move(B,a)) = e-closure({3,8}) = B

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9} = D

 e-closure(move(C,a)) = e-closure({3,8}) = B

 e-closure(move(C,b)) = e-closure({5}) = C

3/22/2020

25

49

State
Input symbol

a b

A B C

B B D

C B C

D B E

E

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) = e-closure ({5}) = {1,2,4,5,6,7} = C

 e-closure(move(B,a)) = e-closure({3,8}) = B

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9} = D

 e-closure(move(C,a)) = e-closure({3,8}) = B

 e-closure(move(C,b)) = e-closure({5}) = C

 e-closure(move(D,a)) = e-closure({3,8}) = B

 e-closure(move(D,b)) = e-closure({5,10}) = {1,2,4,5,6,7,10} = E

50

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

A = {0,1,2,4,7}
B = {1,2,3,4,6,7,8}
C = {1,2,4,5,6,7}
D = {1,2,4,5,6,7,9}
E = {1,2,4,5,6,7,10}

e

2 3

4 5

1

e

e

a

b

e

e

6
e

0 87e 10

e

9a b b

 e-closure({0}) = {0,1,2,4,7} = A

 e-closure(move(A,a)) = e-closure({3,8}) = {1,2,3,4,6,7,8} = B

 e-closure(move(A,b)) = e-closure ({5}) = {1,2,4,5,6,7} = C

 e-closure(move(B,a)) = e-closure({3,8}) = B

 e-closure(move(B,b)) = e-closure({5,9}) ={1,2,4,5,6,7,9} = D

 e-closure(move(C,a)) = e-closure({3,8}) = B

 e-closure(move(C,b)) = e-closure({5}) = C

 e-closure(move(D,a)) = e-closure({3,8}) = B

 e-closure(move(D,b)) = e-closure({5,10}) = {1,2,4,5,6,7,10} = E

 e-closure(move(E,a)) = e-closure({3,8}) = B

 e-closure(move(E,b)) = e-closure({5}) = C

3/22/2020

26

51

Eventually, the 5 sets are:

A={0,1,2,4,7}
B={1,2,3,4,6,7,8}
C={1,2,4,5,6,7}
D={1,2,4,5,6,7,9}
E={1,2,4,5,6,7,10}

A is start state

E is accepting state

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

Final Transition Table

52

B

C

A

a

b
D E

a

b

a

b

b

a

a

b

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

3/22/2020

27

53

• The generated DFA may have a large number of states.

• Hopcroft’s algorithm: minimizes DFA states

• Idea: find groups of equivalent states.

• All transitions from states in one group G1 go to states in
the same group G2

• Construct the minimized DFA such that there is one state
for each group of states from the initial DFA.

54

B

C

A

a

b
D E

a

b

a

b

b

a

b

b

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

3/22/2020

28

55

State
Input symbol

a b

A B C

B B D

C B C

D B E

E B C

B

A, C

a

b

D E
a b

b

a

b

a

56

Convert the regular expression
a (a | c)* b

To DFA using by Thompson Construction Method

RE -> NFA -> DFA

3/22/2020

29

57

58

ε-closure(0) = {0} = S0
ε-closure(move(S0, a)) = ε-closure({1}) = {1,2,3,5,8} = S1
ε-closure(move(S0, b)) = ε-closure({}) = no state

ε-closure(move(S0, c)) = ε-closure({}) = no state
ε-closure(move(S1, a)) = ε-closure({4}) = {4,7,8,2,3,5} = S2
ε-closure(move(S1, b)) = ε-closure({9}) = {9} = S3

ε-closure(move(S1, c)) = ε-closure({6}) = {6,7,8,2,3,5} = S4
ε-closure(move(S2, a)) = ε-closure({4}) = S2
ε-closure(move(S2, b)) = ε-closure({9}) = S3
ε-closure(move(S2, c)) = ε-closure({6}) = S4
ε-closure(move(S3, a)) = ε-closure({}) = no state
ε-closure(move(S3, b)) = ε-closure({}) = no state
ε-closure(move(S3, c)) = ε-closure({}) = no state

ε-closure(move(S4, a)) = ε-closure({4}) = S2
ε-closure(move(S4, b)) = ε-closure({9}) = S3
ε-closure(move(S4, c)) = ε-closure({6}) = S4

3/22/2020

30

59

State a b c

S0 S1 - - Initial

S1 S2 S3 S4

S2 S2 S3 S4

S3 - - - Final

S4 S2 S3 S4

60

State a b c
S0 S1 - - Initial
S1 S1 S3 S1

S2 S2 S3 S4

S4 S2 S3 S4

S3 - - - Final

a (a | c)* b

State a b c

S0 S1 - - Initial

S1 S2 S3 S4

S2 S2 S3 S4

S3 - - - Final

S4 S2 S3 S4

3/22/2020

31

61

• E nd of Chapter # 3

